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1. INTRODUCTION

Laser radars, or lidars, are powerful tools for probing
the atmosphere. They have been used, for example, in
studies to probe for the presence of aerosols in the atmo-
sphere, to obtain the profiles of absorbing gases such as
water vapor and as a wind measuring tool. Theoretical
studies have also been done to investigate the possibility
of using lidars to invert the temperature structure of the
atmosphere. In the past, the 1lidars have been typically
used from ground-based platforms looking upwards or horizon-
tally. A few studies have also utilized lidars mounted in
aircraft or on balloons. Some of these latter studies have
focused on preparing lidars for eventual use on space
shuttles or satellites.

The Air Force Geophysics Laboratory (AFGL) is develop-
ing a lidar system to be flown on the Defense Meteorological
Satellite Platforms (DMSP) series of meteorological
satellites. The lidar system is being designed to study the
optical properties of the atmosphere as well as to measure
wind and composition.

The reflected laser energy can be used to invert infor-
mation about the optical properties of the atmosphere. The
techniques used to invert this information are the subject
of this report. Chapter 2 examines the mathematical formu-
lation of the inversion problem and presents the inversion
techniques commonly used by researchers. Chapter 3 presents

and compares results from a simulated spaceborne lidar

A ] LW KA N (% k0.9, ¢ SO
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system utilizing one of the commonly used inversion tech-
niques. Chapter 4 presents a proposal for an inversion
technique that addresses the needs and goals of a space-

borne lidar system. Finally, chapter 5 summarizes our re-

sults and conclusions.




. 2. FPORMULATION OF THE LIDAR INVERSION PROBLEM
2.1 The Lidar Equation
The received signal for a single wavelength lidar

system is described by the equation

2 £) = Bo =3 A B(r) exp |-2 f o(xt)ar (1)
o 2r o
gﬁ where P(r) is the instantaneous received power from the
‘*

)

:ﬁa range r, P° is the transmitted power of the laser over the
3

s

o pulse length 7 , ¢ is the speed of light, A is the effective
%ﬁ system receiver area, B8(r) and o(r) are the backscatter and
b

ﬁ"

ﬁb: extinction coefficients, respectively. The equation (1) is
:.’;lz

B commonly known as the lidar equation. 1In the above, the
%% backscatter and extinction coefficients include contribu-
)

)

f& tions from all sources, molecular and particulate. The
Vg

.gix“

\ equation also assumes a single scattering atmosphere.
im; Although not done at this time, (1) can be broken down to
e
F 49,

4&; include the separate contributions. A more manageable form
N

. of the lidar equation can be established by defining a
:4"‘&

ﬁf’ quantity, S(r), that is the logarithmic range-adjusted power
e

B )

S(r) = 1n[r°p(r)] (2)
e
;::

M,i Utilizing this quantity eliminates system dependent para-
%, ‘4

l meters from the lidar equation. The new form of the lidar
&ﬁ equation then becomes
o
o
'Y ?!t
i ’
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r

S-S, = ln[B/Bol - Zj;cdr' (3)
o

where So = S(ro), = B(ro) and r_ 1is a constant reference

Bo o

range. The differential equation corresponding to equation

(3) is

ds/dr = 1/8 (df/dr) - 2¢ (4)

One of the goals of using 1lidars to probe the
atmosphere is to invert information about the optical
parameters, ¢ and B . However, a crucial problem is faced
when inverting the lidar equation in that it contains two
unknown variables, the backscatter and extinction coef-
ficients, and only one equation. In order to eliminate the
problem of one equation and two unknowns, researchers have
made assumptions about the relationship between cand 8. We
shall now examine some of the assumptions made concerning
¢ and 8 to put the 1lidar equation into a form that can be
inverted. The implications of the assumptions will be
discussed along with the advantages and disadvantages of

each approach.

2.2 Homogeneous Atmosphere

If one assumes that the atmosphere is homogeneous, then

d g/dr = 0 and equation (4) reduces to
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-

“hom = ~1/2 ds/dr (5)

O ' The assumption of d8/dr = 0 gives rise to what is called the

slope method of inversion. The value of the homogeneous

vt extinction coefficient 1is evaluated as the slope of the
tgt

gt . . .

ﬁ% least squares fit of the S(r) data. An obvious requirement

for the use of the slope method is that dS/dr be negative

i otherwise negative values of the extincient coefficient will

s be obtained.

13 The slope method has been used by Murray1 with an

’ﬁﬁ infrared lidar system. In their study they used a CO2 lidar

o

g& that operated at four wavelengths near 10.3 microns. The

oty

X

o system operated over horizontal paths and was conceived as a

ﬁﬁ, way to measure visibility for aircraft landing operations.

W

e$§ Their study indicated that a single-ended measurement

Lt approach yielded results that agreed with other measurements

*ﬁf for ranges up to 10 km. For additional details on the slope

At

:&g method, the interested reader is referred to the papers by

.l'

LN

<y Collis2 and Viezee3.

P

o

T

:e! .,z

Oy 1. Murray, E. R., M. F. Williams and J. E. van der Laan

L (1978) Single-ended Measurement of Infrared Extinction

&& Using Lidar, Applied Optics, 17:296.

)

¥

o 2. Collis, R. T. H. (1966) Lidar: A New Atmospheric Probe,
Q. J. R. Meteorol. Soc. 92:220.

oty

'}ﬁ 3. Viezee, W., E. E. Uthe and R. T. H. Collis (1969) Lidar

) Observations of Airfield Approach Conditions: An

hM Exploratory Study, J. Appl. Meteorol. 8:274.
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2.3 The Ratio Method

The atmosphere 1is unlikely to be homogeneous over the
entire path being probed by a lidar, especially a space-
borne platform. However, the atmosphere may be nearly homo-
geneous over small intervals of the path. In this case, one
can apply a form of the slope method over the small, nearly
homogeneous layers and then build up an approximation of the
profile of o(r). This method, known as the ratio or slice
method of inversion assumes homogeneity within each layer,
yet relaxes the condition that the extinction coefficient is

constant. The extinction coefficient is then given as4'5'6

o(r;) ’?;r_i'l“[‘i Pry)/eg,) Plry,))] (6)
where the subscripts i and i+l refer to the small, nearly
homogeneous layers and ar; is the distance between the
layers,

The assumption of a homogeneous or near homogeneous
atmosphere suits this method primarily to horizontal viewing
paths, such as would be used for aircraft visibility oper-

ations. The technique could also be used for low elevation

4. Kohl, R. H. (1978) Discussion of the Interpretation
Problem Encountered in Single-Wavelength Lidar
Transmissometers, J. Appl. Meteor., 17:1034.

S. Brown, Jr., R. T. (1979) Comments on "Discussion of the
Interpretation Problem Encountered in Single
-Wavelength Lidar Transmissometers, J. Appl. Meteor.,
18:711.

6. Kohl, R. H. (1979) Reply, J. Appl. Meteor., 18:712.
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slant paths if it was known beforehand that the medium being
- studied did not have sharp boundaries below any critical

iqﬁ ' altitude levels. However, before applying the ratio or slope

. techniques, one must be reasonably sure that homogeneity

j%g existss. Unfortunately, for many interesting situations such
gﬁ as dense cloud, fog, smoke and dust, these methods cannot be
& used. Even under stable conditions 1in fogs, local
S, heterogeneities occur, thus invalidating the inversion
)

?f process.

o Looking down from space, the atmospheric density is
:%3 exponentially increasing. The slope method will then be, by
5§§j definition, inappropriate. The ratio method, however, could
Hﬁt be utilized if the data were devoid of large fluctuations.
E&ﬁ Unfortunately, the large fluctuations can result from
g?? scientifically interesting phenomena such as aerosol layers
&

B or clouds. (The presence of these "scientifically interest-
:H§ ing phenomena"” can further complicate the inversion process
-l

55% by introducing multiple scattering effects for which there
‘Lf is not current accounting.)

o

ﬁﬁ. 2.4 Power Law Relationship Between Scattering & Extinction
Sé: Coefficients

L It has been suggested that under certain conditions the
;gﬁ backscatter and extinction coefficients can be related by a
Eﬁi power law expression of the form
i;‘ B=cak (7)

i ti‘ 5:‘,'&-_‘_,%* B, "5‘ i,l’:‘x‘i? ,‘a' V‘-.'é’ 0
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where ¢ is a constant and k depends upon the wavelength of
the lidar and the properties of the obscuring medium,
Assuming that the power law relationship is valid, the lidar

equation can be given as

ds/dr =(k/olde/dr - 20 (8)

This is a form of the Bernoulli or homogeneous Ricatti

equation which has the general solution7

t.
] _[1gs ar
0-1 = exp[ /k ar ]
r i'ds {9)
X [% - 2/k exp\ - ¥ ar'° dr''jdr’

Assuming k to be constant, the solution may be simplified to

the following

exp [(8 = S )/k]

=

r
031- 2/kJ( exp [(s - 5,)/k] dr’ (10)
r

(o]

This is sometimes known as the near-field solution. This
solution is not a new one. It has been known for a number of
years but, for horizontal or upward looking paths, the
solution can be plagued with instability problems that

result in questionable and/or unrealistic results. This

7. Klett, J. D. (1981) Stable Analytical Inversion Solution
for Processing Lidar Returns, Applied Optics 20:211.
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happens despite the fact that both the numerator and the
denominator approach zero at nearly the same rate. The
denominator tends to zero as the difference of two large
numbers, creating a highly unstable situation. (A more
detailed discussion of the instabilities inherent in (10)

7

can be found in Klett'.)

s e - -

2.4.1 The "Klett Method"
’t Klett7 has proposed an alternate solution ¢to (10) in
which the integration constant in (9) is evaluated in terms
#ag of a range I far from the lidar. Under this assumption, the
T solution is generated for ranges less than r, rather than
ranges greater than r, as in the case of (10). Klett's
approach, that utilizes what is known as the far-field solu-
tion, is given as

exp [(S - 5 )/k]

NG g=

5y rm

vy,

o °;1+ 2/k feXP ((s - 5,)/k] ar’ (e
r

-J% This solution form of the Bernoulli equation is what is
often known as "the Klett method." In a further modification

O to his solution, Klett®

allows for a variable backscatter-
Ky extinction ratio and the inclusion of Rayleigh scattering.

Although similar in form to the near-field solution, it has

RN 8. Klett, J. D. (1985) Lidar Inversion with Variable Back-
Qv scatter/Extinction Ratios, Applied Optics 24:1638.

—
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been found by many researchersg’10

to be more stable than
the near-field solution. However, the majority of studies
that have utilized the "Klett method" have employed hor-

izontal or upward looking orientations. -

2.4.2 Mid-Field Solution

Ferguson and Stephensll

have proposed a futher
alternative to the near-field solution that wutilizes the
stability of the Klett algorithm to calculate a boundary
value at some middle range. In their original proposal, an
iterative approach was employed to calculate an accurate

far-field boundary condition. Mulders12

later pointed out
that the iterative approach could be replaced with an

analytic solution.

2.4.3 The Validity of the Power Law Relationship

The power law relationship allows the researcher to
work with an equation with a known solution. The use of the
*Klett method" offers mathematical stability. However, use
of the power law presupposes knowledge of the attenuating

medium being studied. In addition to "throwing the baby out

9. Hughes, H. G., J. A. Ferguson and D. H. Stephens (1985)
Sensitivity of a Lidar Inversion Algorithm to
Parameters Relating Atmospheric Backscatter and
Extinction, Applied Optics, 24:1609.

10. Bissonnette, L. R. (1986) Sensitivity Analysis of Lidar
Inversion Algorithms, Applied Optics, 25:2122.

11. Perguson, J. A. and D. H. Stephens (1983) Algorithm For
Inverting Lidar Returns, Applied Optics, 22:3673.

12. Mulders, J. M. (1984) Algorithm for Inverting Lidar
Returns: Comment, Applied Optics, 23:2855.
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with the bath water", the power law relationship is not
valid for all types of media that might be encountered by a
- spaceborne lidar system.
In all fairness to Klett, he stated in his original
paper (see page 212 of Klett7) that the use of the power law
g relationship is not appropriate for all aerosol types or
wavelengths. Considering that so many researchers have been
utilizing the power law relationship, it seems reasonable to
i examine the history of the power law relationship between
backscattering and extinction. The results of that examin-
ation are summarized in Table 1.

Curcio and Knestrick13 are one of the earliest sources
for the power law relationship between backscattered radia-
. ‘ tion and attenuation. 1In their paper, they correlated back-
‘ scattering and atmospheric transmission from a series of
horizontal measurements through fog, rain, drizzle, snow and
clear air and found that an empirical relationship of the
form B8 =c¢ 00'66 fit their data. Their data were taken for
white 1light conditions rather than for mononchromatic
radiation, such as one would have with a laser. The authors
also note that their relationship will not hold in
"industrially contaminated air."

There is no a_priori reason to assume that the back-

tf scatter and extinction coefficients would be related by a

. 13. Curcio, J. A. and G. L. Knestrick (1958) Correlation of
i Atmospheric Transmission and Backscattering, J. Opt.
.j SCi. M‘o' 4_8_:6860
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- unique power law relationship. Fenn15

has pointed out that
ot only with a combination of changes in number densities and
size distributions can one get a power 1law relationship
between backscattering and extinction., If the aerosol size
distributions, complex indices of refraction and particle
o shapes were all constant then one could assume a power law

relationship. However, aerosols and clouds are highly
lxi variable phenomena with strong shape, altitude, humidity,
e composition and meteorological (e.g. wind) dependencies.
Even if power law relationships did exist for the aerosols

s and clouds, one would not know which set of values, k and c,

[
e to use because clouds and aerosols can be found at the same
g,
12

altitudes, often at the same times. Also, Mulders has
gﬂﬁ shown that power law relationships, if they can be obtained,
Sy d
.!.v
mw can be fitted to data but that the values of the relevant

parameters can change as a function of time. Mulders con-
cludes from a series of horizontal measurements over the
ocean that the power law parameters are not constant for
more than a few hours.

’3 Pinnick et. al.16 have presented results from
! calculations of backscatter and extinction through stratus

- and cumulus clouds. Their zero order soclution (their term)

ﬁﬁ calculations were performed for 156 measured cloud droplet
W )

.‘!‘p‘l

gﬁ 15. Fenn, R. W. (1966) Correlation Between Atmospheric Back-
RO scattering and Meteorological Range, Applied Optics,

~ 5:293.

'35 16. Pinnick, R. G., S. G. Jennings, P. Chylek, C. Ham and
Y W. T. Grandy, Jr. (1983) Backscatter and Extinction in
e Water Clouds, J. Geophys. Res., 88:6787.
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distributions for visible, near IR and IR wavelengths. They

found that a linear relationship exists between backscatter

R

and extinction at 0.6328 ym but that none exists at 10.6 ym.
Shettle17 has presented results of backscatter and ex-

G tinction coefficient comparisons for the tropospheric aero-
sol models in LOWTRAN 6 as a function of relative humidity.
His calculated results for the wavelengths 0.53 and 10.59um
are reproduced as Figures 1 (a.) and (b.), respectively.
Each point on the curves represents a different relative
humidity. Table 2 gives the corresponding exponents requir-
ed to fit the data in Figqure 1 (a.) with a power law over
N the given relative humidity ranges. (The attenuation
" coefficients increase with relative humidity.) His results
NG demonstrate that a power law relationship is not appropriate
i for tropospheric aerosols except over very limited relative
humidity ranges and for given wavelengths. Figure 2 shows

o similar results for the AFGL stratospheric aerosol models.
R The three points refer to representative background strato-
® spheric conditions, aged volcanic aerosols and fresh vol-
43 canic aerosols [Shettle, private communication, 1986].
y Again, a unique power law relationship does not exist for
stratospheric aerosols. In a realistic situation, the
X stratosphere could contain all three types of aerosols with
K three different characteristic indices of refraction and

size distributions.

T 17. Shettle, E. P. (1985) Backscattering by Atmospheric
i Aerosols, Presented at the IAMPA/IAPSO Joint Assembly,
= Honolulu, Hawaii, 5-16 August 1985.
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|t Table 2. Values of the Exponent k Required to Fit the AFPGL
) Boundary Layer Aerosol Models Shown in PFigure 1 (a.) With A
# Power Law Over the Given Relative Humidity Ranges

Relative Humidity Range (%)
" Aerosol Type 0 - 70 70 - 80 80 - 99

o Rural -0.4 0.09 0.9
Maritime 0.7 0.9 1.2
Py Urban 1.2 1.2 1.2

ny Tropospheric 0.05 0.1 0.7
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Figure 2. Backscatter and Extinction Coefficients At 0.55

&E microns for Representative Background Stratospheric Aerosols,
e Aged Volcanic Aerosols and Fresh Volcanic Aerosols

(Shettle, private communication)
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Evans has confirmed the results of Shettle and
vyt
aﬁ‘ extended the analysis to other aerosol types. Evans perform-
iy
.gﬁ ed calculations of the backscatter/extinction ratio wusing
170’,
e Mie theory for a large range of values of the real and
¢§? imaginary components of the index of refraction and the
W
ji} modal size parameter. His results are summarized in Table 3
":',.'fe
v and can be used by researchers to determine for what wave-
e . . . . Cy
'ﬁg lengths and size distributions one could utilize a power law
l‘l'gil
;ww relationship.
ey
'I.t.
';0:‘: . .
a& 2.5 Linear Wavelength Dependence of Aerosol Scattering
L]
.’:..':‘,:' The use of more than one laser wavelength increases the
.Q‘lli
' amount of information about the medium being studied.
B Utilizing frequency doubling and tripling techniques, one
% ?“\,_‘_
2 can, for instance, use one laser line to provide information
e
) about the molecular components of the atmosphere, thereby
e
ﬁ?- helping to define the background atmospheric signal, and use
AL
‘g
ﬁrb a second line to study aerosol contributions.
L2

DeLuisi et.al.19 have proposed wusing a dual or triple
“ b
et
K2 wavelength lidar system in which the aerosol scattering is
192
"y
PO &
+o B 18. Evans, B. T. N. (1986) Sensitivity of the Lidar Ratio to
‘N Changes in Size Distribution and Index of Refraction,
Y Thirteenth International Laser Radar Conference, NASA
KTy Conference Publication 2431, National Aeronautics and

Space Administration, Code NIT-4, Washingtion, D. C.
l$”_ 19. DeLuisi, J. J., Schuster, B. G. and Sato (1975)
LW Separation of Dust and Molecular Scattering
‘s Contributions to the Lidar Observation: A Method,
733:: Applied Optics 14:1917.
. |
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linearly related. With their formulation, the scattering

coefficient for wavelength i is given as

i= 1, 21 3
where A is the wavelength. Utilizing this assumption

DeLuisi et.al. were able to develop an inversion technique
with equal numbers of equations and unknowns that would
allow one to obtain a separate inversion of molecular and
aerosol optical properties.

The key to the DelLuisi et. al. approach is the
assumption that a linear relationship exists relating the
aerosol extinction properties at different wavelengths.
Figure 3 displays the wavelength dependence of the aerosol
extinction and scattering coefficients for the background
stratospheric, aged volcanic and fresh volcanic aerosol
models used 1in the AFGL model atmospheres (Shettle, private
communication). (For the background stratospheric conditions
the extinction and backscatter coefficients overlap.) The
figures show that the wavelength dependences are not neces-
sarily linear and that they differ from one aerosol. type to
another. This being the case, one would have to guess the
type of aerosol being probed in order to incorporate the

appropriate wavelength dependence.
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2.6 Applicability of the Available Inversion Techniques for
Spaceborne Applications

Table 4 summarizes the results from the examination of
the various inversion techniques from the perspective of a
spaceborne lidar system. The table 1lists the fundamental
assumptions of each of the techniques, advantages and disad-
vantages.

The slope and ratio methods offer simplicity but are
not appropriate for a spaceborne system. The slope method
cannot be used because the viewing path is inhomogeneous
(i.e. exponentially increasing). The ratio method also can
not be used because the degree of inhomogeneity gives rise
to negative attenuation coefficients.

The inversion technique that 1is commonly used by
researchers is based on the power law assumption with the
*Klett technique®" for the solution. The assumption of a
power law relationship yields an equation with a known
solution. The "Klett" approach is used rather than the
near-field solution because of its supposed improvements in
stability. The use of the word "supposed” is deliberate.
The studies to-date with the "Klett" technique have not
demonstrated that the far-field solution is inherently more
stable than the near-field solution. The studies to-date
have primarily involved horizontal or upward looking path
configurations and it may be that the choice of path
configuration determines the stability characteristics of a

given form of a Bernoulli equation solution. Kastner and
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Quenze have examined the usefulness of the near- and far-

field algorithms in the context of a downward-looking,
spaceborne lidar system. Their results indicate that in an
atmosphere with low turbidity the near-field solution yields
better results than a far-field solution. In an atmosphere
with high turbidity, they found that the far-field solution
gave better results.

The next chapter presents results from a simulated
downward looking spaceborne system that utilizes a power law
approach for inversion. Results from both near- and far-
field solutions will be presented in order to gauge the

superiority, if any, of one solution approach over another.

20. Kastner, M. and H. Quenzel (1986) The Usefulness of
Klett's Inversion Algorithms to Simulated Satellite
Lidar Returns, Thirteenth International Laser Radar
Conference, NASA Conference Publication 2431, National
Aeronautics and Space Administration, Code NIT-4,
Washington, D. C.
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3. SIMULATION OF INVERSIONS FROM A SPACEBORNE LIDAR SYSTEM
The simulation is intended to be representative of data
taken from the lidar system under development by AFGL. A
version of the system has been flown on a high altitude
balloon from the White Sands Missile Range, New Mexico. The
features of the 1lidar system and the test flight are

summarized in Table 5 (Bedo, private communication, 1986).

3.1 Simulated Atmosphere

Lidar signals from a midlatitude summer atmosphere
under a variety of conditions are being simulated. A
midlatitude summer atmosphere was chosen as being most
representative of the conditions at the time of the launch.
Tabulated optical parameters at 337 and 514.5 nm were taken

from the work of McClatchey et. al.21

for this study. These
wavelengths were assumed to be close enough to the actual
lidar lines for the purpose of this study.

The scattering and extinction coefficients for an
aerosol-free atmosphere at 337 and 514.5 nm are shown in
Figures 4 and 5, respectively. The 337 nm extinction
coefficients include molecular absorption from ozone as well

as Rayleigh scattering. As shown in Figure 6, the data do

not exhibit a linear relationship that corresponds to a

bower law of k=1. Figure 7 shows the individual components

21. McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E.
Volz and J. S. Garing (1972) Optical Properties of the
Atmosphere, Air Force Cambridge Research Laboratories,
Hanscom Field, Bedford, Massachusetts, AFCRL-72-0497,
AD753075.
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Aerosol Free Atmosphere — 337nm
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Figure 4. (a.) Backscatter and (b.) Extinction Coefficients

r As A Function of Altitude for a Midlatitude Summei, Aerosol-
¥ free Atmosphere at 337 nm
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Aerosol Free Atmosphere — 514.5nm
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As A Punction of Altitude for a Midlatitude Summer, Aerosol-

free Atmosphere at 514.5 nm
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as a function of altitude. The 514.5 nm values consist of
Rayleigh scattering only and correspond to a power law rela-
iy ' tionship in which k=1, as shown in Figure 8. At Dboth
4 wavelengths, the scattering coefficients are those at a
backscattering angle of 180 degrees.

The results to be presented are referenced to a space-
borne platform. Therefore, the near-field solution refers
to a solution that begins at high altitudes and proceeds
toward the surface. The far-field solution begins at or near
the surface and proceeds towards the spacecraft.

The simulations will be performed for the eight cases
X0 listed in Table 6. It is assumed that the short wavelength
laser line would be used primarily to define the molecular
i components of the atmosphere and that the visible line would
b be used for aerosol studies. Under this assumption, one
would invert the shorter wavelength data first to determine
the gaseous components and then invert the visible data to

extract any aerosol information.

ol int’ 0 2ty -

In the results that follow it is assumed that the near-

and far-field boundary conditions are known accurately.

a5

Results will also be presented in which the boundary

.

conditions are perturbed by +/- 10 and 40 % to determine the
! effects of inaccuracies in the boundary conditions on the

inversion algorithms.

- -
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3.1.1 Case 1 - Aerosol-free Atmosphere at 337 nm
Figures 9 (a.) and (b.) show the results for an

aerosol-free simulated atmosphere at 337 nm from the near-

N
PPN

and far-field inversions, respectively. The results are

given for k values of 0.8, 1.0 and 1.2. The differences

-~
-

between the inverted atmospheric data and the simulated

— -

atmosphere with k=1.0 are small for both the near- and far-
. field solutions with the differences being due to the
I presence of ozone absorption (see Figure 7).
Figure 10 shows the results of the inversions with
4 changes in the boundary conditions considered. The near-
‘5 field solution results, Figure 10 (a.), show a somewhat
W greater sensitivity to changes in the boundary conditions

X than do the far-field solution results, Figure 10 (b).

3.1.2 Case 2 - Aerosol-free Atmosphere at 514.5 nm
; Figures 11 (a.) and (b.) show the results for a

! simulated atmosphere at 514.5 nm from the near- and far-

A field inversions, respectively. For both solution forms, a

4 value of k=1 yielded the best solutions, as they should,
& seeing that the simulated data were based on a power law
p relationship between the extinction and backscattering. The
; differences shown in the curves are due to the linear fit-
3

ting of the simulated data. Figures 12 (a.) and (b.) show

the results with perturbations in the boundary conditions

considered.
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The preceding two sets of results demonstrate that a
power law approximation will reproduce an atmosphere con-
sisting of Rayleigh scatterers with little or no molecular
absorption. The results to follow will examine the ability
of a power law approach to accurately reproduce an atmo-
sphere containing Rayleigh as well as non-Rayleigh compo-
nents. It is presumed that the non-Rayleigh components are
aerosols or clouds. The results will utilize the 514.5 nm

laser line.

3.1.3 Case 2 Plus Background Stratospheric Aerosols

This case considers an atmosphere with background
statospheric aerosols added to a background Rayleigh atmo-
sphere. The aerosols are added between 10 and 25 km.
Figures 13 (a.) and (b.) show, respectively, the backscatter
and extinction coefficients for the case. The background
aerosol-free values are dashed in for reference. Figure 14
gives the backscatter coefficents plotted against the
extinction coefficients.

The near- and far-field inversions are shown in
Figures 15 (a.) and (b.), respectively. 1In both the near-
and far-field solutions, a profile based k=1 reproduces the
simulated data above and below the aerosol layer. Figures
16 (a.) and (b.) show the sensitivity of each solution to

changes in boundary conditions with a value of k=1, -
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3.1.4 Case 2 Plus Clear Tropospheric Aerosols

In this example, a layer of tropospheric aerosols 1is
added between the surface and 10 km. The optical conditions
correspond to a "clear" atmosphere. Figures 17 (a.) and
(b.) show the backscatter and extinction coefficients as a
function of altitude. Figure 18 shows the plot of the
backscatter versus the extinction coefficients.

The results from the inversion with various values of k
are shown in Figures 19 (a.) and (b.). Both approaches give
good results with a k=1 power law for altitudes above 10 km.
The near-field solution looks like a value of k between 0.8
and 1.0 will give a reasonable fit. The far-field solution
has reasonable fit with k=0.8. Figures 20 (a.) and (b.)
show the results with variations in the boundary condition
considered. The results assumed k=l.

3.1.5 Case 2 Plus Combined Stratospheric and Tropospheric
Aerosols

This case corresponds to the combination of the
background stratospheric aerosols with the clear tropo-
spheric aerosols from the preceding case. Figures 21 (a.)
and (b.) show the backscatter and extinction coefficients,
respectively, as a function of altitude. Figure 22 displays
the backscatter coefficients plotted against the extinction
coefficients.

Figures 23 (a.) and (b.) show the results of the
inversion with k varied and Figures 24 (a.) and (b.) show

the results of the variation of the boundary conditions.
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< None of the k values tried yielded an acceptable fit to the

simulated data. A value of k of 0.8 gave a reasonable fit

to the far-field solution for altitudes below 10 km but an

Tl

unacceptable fit above 10 km. This agrees with the results
for the 1individual aerosols layers (see Sections 3.1.4 and
' 3.1.5). One can conclude from this, that one power law

. cannot represent an atmosphere with distinct aerosol layers.

3.1.6 Case 2 Plus Aged Volcanic Aerosols

1 Fiqures 25 (a.) and (b.) show the backscatter and
; extinction coefficients as a function of altitude for an
s atmosphere with aged volcanic aerosols added to an aerosol-
: free background. The backscatter and extinction coef-
ficients, as shown in Figure 26, are those in LOWTRAN 6
[Shettle, private communication, 1986].

Figures 27 (a.) and (b.) give the results from the
inversions with different values of k and Figures 28 (a.)
and (b.) give the results from the variation in the boundary
conditions with k=1. As with the background stratospheric
aerosol results (e.qg. Figqure 15), a power law with k=1 will
reproduce the aerosol-free parts of the atmosphere but not

- those with aerosols present.

3.1.7 Case 2 Plus Fresh Volcanic Aerosols
Pigures 29 (a.) and (b.) show the backscatter and
- extinction coefficients as a function of altitude for an

atmosphere with fresh volcanic aerosols added to an aerosol-
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free background. The backscatter and extinction coef-
ficients, as shown in Figure 30, are those in LOWTRAN 6
[Shettle, private communication, 1986].

Figures 31 (a.) and (b.) give the results from the
inversions with different values of k and Figures 32 (a.)
and (b.) give the results from the variation in the boundary
conditions with k=1. As with the background stratospheric
aerosol results (e.g. Figure 14), a power law with k=1 will
reproduce the aerosol-free parts of the atmosphere but not
those with aerosols present.

3.1.8 Case 2 Plus Combined Background Stratospheric and
Fresh Volcanic Aerosols

Figures 33 (a.) and (b.) show the backscatter and
extinction coefficients as a function of altitude for an
atmosphere with 50 % background stratospheric and 50 % fresh
volcanic aerosols added to an aerosol-free background.
Figure 34 displays the backscatter and extinction coef-~
ficients.

Pigures 35 (a.) and (b.) give the results from the
inversions with different values of k and Figures 36 (a.)
and (b.) give the results from the variation in the boundary
conditions with k=1, Under these conditions, a power law
with k=1 does a reasonable job of reproducing the simulated

data.
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i 3.2 Evaluating the Boundary Conditions in a "Real World"
i Situation
Y In the preceding sections, it was assumed that the
N
‘.l
;ﬁ boundary conditions were known. Then, it was shown that
o
inaccuracies 1in the boundary conditions could have a
"t
(]
.d significant impact on the 1inverted results, It is fair to
N
’% ask the question, "Can the boundary conditions be known
L N)
accurately?”
I If one were using the far-field solution approach, the
>,
N . . L
ﬁ extinction coefficients at or near the surface would be
L 0 required. If the visibility is known, the extinction coef-
Yo
w,
.:: ficient at visible wavelengths can be evaluated from the
hA Koschmieder formula
o)
. o = 3.912 / V (13)
:
:r: where V is the meteorological range. If the observer visi-
ot
h: ibility, vobs' is known, then V can be approximated as
)
R
NG vV = +/- Y
(1.3 +/- 0.3) obs (14)
:':‘n
' The observer visibility is not an exact measure of the
’-'\.
L
s transmission properties of the atmosphere and can vary
- ..t
.
"y greatly from one observer to another. Even with observer
~ errors ignored, 1t is a quantity that can vary greatly
o8]
v .
Mg during the day.
.
D )
oy Over the ocean or uninhabited land areas, one would not
- have a way to calculate the extinction coefficient boundary
I’
’
" L . . . o .
o conditions. Even if a surface extinction coefficient clima-
2
2
67
L
i

L S L S e SR U S SN I SR I I e R I w e A Y
'7-" r_'-' '\"'5,'&."'- . "\."“* o ‘ » _ -_ < ™ 1




W‘ W e W B T T -7 77
o

tology existed, it would still not be accurate enough for

the inversion of lidar data.

; For the near-field solution, the boundary condition re-
y presents the extinction at a high altitude, presumably in an
f: altitude region well above any aerosol or cloud layers. 1In
3 this case, the Rayleigh scattering values can be used for
)
s the boundary conditions. Assuming that the laser line was
g_ one in which little or no molecular absorption occured, the
.; assumption would be valid. Seeing that the Rayleigh scat-
)

Ve tering is primarily dependent upon the wavelength (there is
i a minor dependence of pressure and temperature upon the
i atmospheric index of refraction), the near-field boundary
» conditions could be evaluated utilizing Rayleigh scattering
N coefficients. The net effect is that the near-field bound-
,i ary conditions can be evaluated with an accuracy that can
by not be achieved for the far-field solution.

Ld

E 3.3 Summary of Results Utilizing A Power Law Inversion

P, Approach

s

= The calculations Jjust presented have demonstrated that
,&‘ a power law inversion approach can accurately invert an
v,

3 atmosphere that only consists of Rayleigh scatters. The
&7 real atmosphere is rarely free of aerosols and, as
;; demonstrated, a power law approach does not accurately
s invert the optical properties of a Rayleigh and non-Rayleigh
‘l atmosphere. To complicate matters, the atmosphere contains
E mixtures of different kinds of aerosols. Therefore, even 1if
1),y

S

a power law could invert the optical properties for a given

‘5'5'( i:l:-"\;':; 1:4‘-”1$1." .';“:‘:‘ L.
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aerosol, one would have to know in advance what kind of

aerosol was being probed so as to select the correct value
of k. This requirement coupled with the lack of a physical
justification for the power law assumption forces one to
conclude that a power law inversion approach cannot be used
for the inversion of data from a spacebcrne lidar system.
An alternate approach can be recommended that is rooted in
the physics of radiative transfer. The alternate approach

will now be presented in the next chapter.

69

AT

RO N WAL L S I NP e T S O TS R NS S ) LI 3 - DTN
g o5 PN P, : o Ca’s IS, N S, W
. -, '-'. AT XYY . .l‘ )\ .‘ n T Y "‘I.J LY, !..'-".o "Q‘!"‘a " y " ot f\

(A

R
-9 » L N a



s _ . N e o » \ia g TPy vIToweYw

o

N

L)

R )

Rt 4. AN ALTERNATE INVERSION APPROACH FOR A SPACEBORNE LIDAR

t ot SYSTEM

;: Assuming that one can measure the atmospheric density
Lﬁj profile, an expected profile of signal returns can be

calculated (eg. Equation 1) for an atmosphere of pure

PR

Rayleigh scatterers, PRay' From this profile for a pure
)
t&p Rayleigh atmosphere, one can calcuate a profile of the ratio
o of the actual lidar returns to that expected from a Rayleigh
SN
N atmosphere, R(r)
A S
=y
! P(r
) (r) sczual
s 2 R(r) = ——
} (15)
o~ PAE)
I8
~
B . . . . .
n The atmospheric extinction profile consists of molecular and
K aerosols components,
"Q‘|
Vel -
o ofr) = o(r)Ray + 9(r) per (16)
e
I Expressing Eq (15) in its component terms gives
)
"‘“ B T ) + r
f R(r) = 8, Ray %S,Aer exp| - cher dr'
o B(r) (17)
':::J &a Y
k) ’F 3 .
o where £ bs,Aer and 8 bs,Ray are, respectively, the aerosol
al and Rayleigh backscatter coefficients.
-E" The single scattering albedo, w,s can be given as the
Lo ratio of the total scattering to extinction coefficients ]
s “o =
2 o= 8, /o (18)
TS !
't
'J{ The single scattering albedo can also be given in terms of
[y v
e the phase function, p(Q},
J,\.'
': i
W wo =.. (19) i
1)' Y !
|
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Substituting Equation (18) into Equation (17) gives

) B{r) + B8(r (180)
i R(r) = és,Ray é,le? expl|-2 Bs dr'/wo
Bir)

ay (20)

Equation 20 can be solved numerically with an iterative
method, such as the Newton-Raphson techniquezz, to solve for
the total scattering coefficient.
A sample inversion using this alternate technique is
given in Figure 37. The sample calculations were made using
j the aged volcano parameters of Case 6. The calcuations
,; assumed a constant single scattering albedo of 0.9519. The
L)

; inversion result 1is quite good, with a maximum difference
between the actual profile of about 8 %. Figures 38 (a).
and (b.) show, respectively, the impact of variations in the
! single scattering albedo and fraction of scattering into the
< backwards direction. In both cases, the values were
é, perturbed by + and - 10 §. The results for this case
indicated that the inversion was somewhat less sensitive to
: variations in the single scattering albedo. A full set of
sensitivity calculations should be performed utilizing other

assumed aerosol models before any general conclusions can be

; made concerning what are the most sensitive parameters in
- this alternate inversion technique, For example, one must
s

have the profile of Rayleigh scattering extinction

! 22. Dahlquist, G. and A. 3jorck (1974) Numerical Methods,

s Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
222-227.
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coefficients and to do this one must know the atmospheric
density profile. Also, one must have some information about
the single scattering albedo and the fraction of
backscattered radiation. One can obtain these either from
the literature or from detailed sets of Mie calculations.
In order to utilize that information, one must be willing to
limit the range of possible values by assuming some
knowledge about the aerosol 1layer. For example, one could
say that 1if the returns are from a specific altitude region
they must be from a certain type of aerosol. Also, using
the latitude and longitude of the satellite track one could
say whether or not the returns are from an urban or rural
type of aerosol. The point to stress is that the alternate
technique still requires some knowledge c¢f the aerosol,

primarily a guess of what type of aerosol 1is causing the

return.




ﬂ"?("
Vi
X
‘l -“
_;:’1,::
‘9"‘0'
K
AR 5. SUMMARY OF INVERSION TECHNIQUES AND RECOMMENDATIONS FOR
i FUTURE WORK
(3= \;
' S 5.1 Summary of Results
d
,Jﬁ An examination of inversion techniques applicable for a
e '
.. spaceborne lidar system has been performed. The purpose of
n
o . . .
3;3 the examination has been to recommend a technique that could
wn
aﬁ; be used with the lidar system under development by AFGL.
'i.«'
In a purely Rayleigh atmosphere with no or minimal
"
)
;xj gaseous absorption, a power law relationship between back-
oy
:z& scattering and extinction exists 1in which k=1, In an
"'.h'
. atmosphere with aerosols and clouds, the assumption of a
.‘
: .-I‘; . . .
.“ﬁg power law relationship is tenuous at best. Although popular
b
a]ﬁ with researchers, the examination of the literature leads us
5%
" to conclude that the power law relationship has no physical
ONE
3i§ basis to support its extensive use. For any application
o
‘ o probing different regions of the atmosphere and different
el types of aerosols, one cannot assume a single set of power
o
%% law parameters for the entire atmosphere.
i
!
=&§- An alternate inversion approach has been presented
230 et
based on the fundamental radiative transfer characteristics
B
ASAN
;:ﬁ: of the atmosphere,. The approach 1is rooted in fundamental
‘N
\"\
f%ﬁ physics but, still, does not eliminate the problem of more
‘Qﬁ unknowns than equations. For the approach to be used, one
e
ﬁ.: must still make an assumption about the type of aerosol
A
" )
ﬁ&f responsible for the lidar signal.
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o 5.2 Recommendations for Future Research
ﬁ“ The alternate inversion approach that has been presented
‘ki should be researched further to investigate its sensitivity 1
é& to variations 1in the input parameters. This sensitivity ‘
%ﬁ study would help to establish the accuracy requirements of
By
k;‘ the input data.
R The alternate inversion approach requires information on
i;‘ the phase function and the single scattering albedo of the
ég? aerosols. A review of the literature should be performed to
?#g determine what measurement database exists for the type of
E{: aerosols that would most likely be encountered by a
:?3 spaceborne lidar system. Where measurements are lacking,
A calculations should be performed or results from previous
}g: calculations assembled.
;:ﬁ Finally, the alternate inversion technique should be
;)« tested against the lidar data obtained from the recent test
ﬁy; flight. This would help to establish the usefulness of the
if% technique in the "real world" rather than the highly
:Qh unrealistic situation in which the actual profiles are
ﬂgﬁ known.
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